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We analyze a microscopic RNA model, which includes two widely used models as limiting cases; namely,
it contains terms for bond as well as for stacking energies. We numerically investigate possible changes in the
qualitative and quantitative behavior while going from one model to the other; in particular, we test whether a
transition occurs when continuously moving from one model to the other. For this we calculate various
thermodynamic quantities, at both zero temperature and finite temperatures. All calculations can be done
efficiently in polynomial time by a dynamic programming algorithm. We do not find a sign for the transition
between the models, but the critical exponentn of the correlation length, describing the phase transition in all
models to an ordered low-temperature phase, seems to depend continuously on the model. Finally, we apply the
«-coupling method to study low-energy excitations. The exponentu describing the energy scaling of the
excitations seems to depend not much on the energy model.
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I. INTRODUCTION

RNA plays an important role in the biochemistry of all
living systemsf1,2g. Similar to DNA, it is a linear-chain
molecule built from four types of bases: i.e., adeninesAd,
cytosinesCd, guaninesGd, and uracilsUd. It does not only
transmit pure genetic information, but, e.g., works as a cata-
lyst. While for the former the primary structure—i.e., the
sequence of bases—is relevant, for the latter kind of higher-
order structures—i.e., secondary and tertiary structures—is
relevant.

Like in the double helix of DNA, in RNA complementary
bases can build hydrogen bonds between each other. Com-
pared to DNA, where the bonds are built between two dif-
ferent strands, RNA builds bonds between bases of the same
RNA strand. The information, which bases of the strand are
paired, gives the secondary structure, and the spatial struc-
ture is called the tertiary structure. The tertiary structure is
stabilized by a much weaker interaction than the secondary
structure. This leads to a separation of energy scales between
secondary and tertiary structures, and gives justification to
neglect the latterf3g. Therefore we deal here with the sec-
ondary structure only.

One crucial point in calculating the secondary structure is
the energy model used: On the one hand, if one aims to get
minimum structures close to the experimentally observed
one, one uses energy models that take into account structure
elementsf4–7g—e.g., hairpin loops. On the other hand, if
one is interested in the qualitative behavior, one uses models
as simple as possible that keep the general behavior—e.g.,
only one kind of basef8g or using energies depending only
on the number and on the type of paired basesf9–12g. Here
we will consider only models with the latter kind of interac-
tion energy. In recent years several authors examined this
kind of model with regard to the thermodynamic behavior—

i.e., searching for phase transitions and describing the type of
phase involvedf10–13g. Liu and Bundschuhf8,14g recently
discussed whether native RNA is already in the regime of the
thermodynamic limit or finite-size effects have to be taken
into account. In this paper we numerically investigate a hy-
brid model of two well-known energy modelsf9–12,15g: i.e.,
a pair energy model, where only base pairs are considered
regardless of their neighborhood, and astacking energy
model, where only consecutive paired bases—i.e., forming a
stack—give an energy contribution. It has been claimed that
the stacking energy is more relevant than just the pair energy
in real RNAf16g. Our model contains terms forboth types of
interactions and allows one to move continuously from one
model to the other. We are interested in whether the two
limiting models are qualitatively different—in particular,
whether a phase transition occurs, when moving from one
model to the other.

The paper is organized as follows. In Sec. II, we define
our model; i.e., we formally define secondary structures and
introduce our energy model. In Sec. II B, we explain how to
calculate the partition function with a dynamic programming
algorithm. In Sec. III, we introduce the observables which
we investigate in the following Sec. IV. While in Secs. IV B
and IV C we do finite-temperature calculations, in Sec. IV D
we use the«-coupling method at zero temperature.

II. MODEL

Because RNA molecules are linear chains of bases, they
can be described as asquenchedd sequenceR=sr idi=1,. . .,L of
basesr i P hA,C,G,Uj, where L is the length of the se-
quence. Within this single-stranded molecule some bases can
pair and build a secondary structure. Typically Watson-Crick
base pairs—i.e., A-U and C-G—have the strongest affinity to
each other; they are also called complementary base pairs.
Each base can be paired at most once. For a given sequence
R of bases the secondary structure can be described by a set
S of pairs si , jd swith the convention 1ø i , j øLd, meaning
that basesr i and r j are paired. For convenience of notation

*Electronic address: burghard@theorie.physik.uni-goettingen.de
†Electronic address: hartmann@theorie.physik.uni-goettingen.de

PHYSICAL REVIEW E 71, 021913s2005d

1539-3755/2005/71s2d/021913s9d/$23.00 ©2005 The American Physical Society021913-1



we further define a matrixsSi,jdi,j=1,. . .,L with Si,j =1 if si , jd
PS andSi,j =0 otherwise. Two restriction are used:sid Here
we exclude so-calledpseudoknots, which means, for any
si , jd, si8 , j8dPS, either i , j , i8, j8 or i , i8, j8, j must
hold; i.e., we follow the notion of pseudoknots being more
an element of the tertiary structuref16g.

sii d Between two paired bases a minimum distance is re-
quired: u j − i uùs is required, granting some flexibility of the
moleculesheres=2d.

A. Energy models

Every secondary structureS is assigned a certain energy
EsSd; note that this energy in general depends on theR as
well, so it is more precise to writeEsS ,Rd, but we assume
that the structure also includes the information about the se-
quence. With such an energy model it is possible to calculate
the canonical partition functionZ of a given sequenceR by
summing over all possible structuresZ=oSe−bEsSd, but it is
computationally more efficient to compute it by using the
partition functions of the subsequences—i.e., by a dynamic
programming approach.

Motivated by the observation that the secondary structure
is due to building of numerous base pairs where every pair of
bases is bound by hydrogen bonds, one assigns each pair
si , jd a certain energyesr i ,r jd depending only on the kind of
bases. The total energy is the sum over all pairs,

EpsSd = o
si,jdPS

esr i,r jd; s1d

e.g., by choosingesr ,r8d= +` for noncomplementary bases
r, r8 pairings of this kind are suppressed.

Another possible model is to assign an energyEs to a pair
si , jdPS iff also si +1,j −1dPS. Thisstacking energycan be
motivated by the fact that a single pairing gives some gain in
the binding energy, but also reduces the entropy of the mol-
ecule, because through this additional binding it loses some
flexibility. Formally the total energy of a structure can be
written as

EssSd = o
si,jdPS

EsSi+1,j−1, s2d

assuming that for every pairsi , jdPS the basesr i and r j are
complementary bases. The total numbert of consecutive
base pairs is called thestacking size. Single base pairs are not
considered as stacks; therefore,tù2 for any stack.

Both types of energy models are discussed in the literature
f9–12,15g, but to our knowledge, only Mülleret al. f17,18g
have discussed a model with both stacking and pair energy
contributions. However, the above authors do not discuss the
dependence of their results on the energy parametersEp and
Es. Instead they use a fixed set of parameters to study the
unzipping behavior of RNA, which is in the focus of their
work. Here, we examine the sum of both models—stacking
energy and pair energy:

EsSd ª EpsSd + EssSd, s3d

where the parametersEs andesr ,r8d can be adjusted freely,
including both models discussed above. In particular we are

interested in varying the parameters and studying whether
the models are qualitatively different. Here we use

esr,r8d = HEp if r andr8 are complementary bases,

+ ` otherwise,
J
s4d

with a pair energyEpø0 independent of the kind of bases.
Due to the simple structure of the energy model—e.g., the

energies depend not on the position of the bases within the
sequence or whether the paired bases include some structure
elements like hairpins—the ground state is highly degener-
atedf12,13g.

B. Calculating the partition function

Due to the fact that pseudoknots are excluded from our
model ssee Sec. II Ad, the calculation of the partition func-
tion can be done recursively. The algorithm is similar to that
of Nussinovet al. f19,20g. The algorithms calculate the ele-
ments of two upper-triangular matricessZi,jd1øiø jøL and

sẐi,jd1øiø jøL, whereZi,j is the partition function of the sub-
sequence from baser i to r j under the boundary condition that

basesr i−1 andr j+1 are not paired, andẐi,j the partition func-
tion under the boundary condition that basesr i−1 andr j+1 be

complementary;Ẑi,j is only used as an auxiliary matrix. Then

Zi,j can be computed from the partition functionsZ andẐ of
smaller subsequences in the following waysremember thats
denotes the minimum distance between two bases of a paird:

Zi,j = Zi,j−1 + o
k=i

j−s−1

Zi,k−1e
−esrk,r jd/kBTẐk+1,j−1,

Ẑi,j = Zi,j−1 + e−sesri,r jd+Esd/kBTẐi+1,j−1

+ o
k=i+1

j−s−1

Zi,k−1e
−esrk,r jd/kBTẐk+1,j−1,

Zi,j = Ẑi,j = 1 for i ù j ,

Ẑi,j = 0 for 0, j − i , s− 2, s5d

which is schematically explained in Fig. 1. Because both
matrices depend on each other, they must be calculated si-

FIG. 1. Schematical explanation of Eqs.s5d ands6d; e.g., white

boxes representZ, gray boxesẐ.
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multaneously, starting along the diagonal and continuing
along the off diagonals. The calculation of the partition func-
tion can be done inOsL3d steps, whereL is the length of the
sequence. The partition functionZ of the entire sequence is
Z1,L, but also the other matrix elements are useful for gener-
ating ensembles of structures according to the Boltzmann
distribution ssee Sec. IIId.

A similar algorithm can be used to calculate the ground-
state energy:

Ni,j = minhNi,j−1, min
k=i

j−s−1

fNi,k−1 + esrk,r jdg + N̂k+1,j−1j,

N̂i,j = minhNi,j−1,esr i,r jd + Es + N̂i+1,j−1,

min
k=i+1

j−s−1

fNi,k−1 + esrk,r jd + N̂k+1,j−1gj,

Ni,j = N̂i,j = 0 for i ù j ,

N̂i,j = + ` for 0 , j − i , s− 2. s6d

In comparison to Eq.s5d additions are replaced by min op-
erations, multiplications by additions, and the exponentials
of the energies by the energies themselves.

III. OBSERVABLES

After calculating the partition functionZ for a given ran-
dom sequence, we want to measure some quantities to com-
pare the members of the ensemble. In principle most quanti-
ties could be calculated by a similar dynamic programming
algorithm introduced above; e.g., the calculation of quanti-
ties which are derivatives of the partition function with re-
spect to temperature, external fields, etc., can also be calcu-
lated withOsL3d effort; this can be easily seen from Eq.s5d.
For other quantities—e.g., the distribution of the overlaps
Psqd, which we we study here—the running time behavior
would be of higher ordersthan threed in the sequence length
f9g. For this reason we use a different method, where an
ensembleE of structures is generated due to its Boltzmann
weight. The procedure to build a sequence is essentially a
backtracking algorithm: Starting with the entire sequence a
partner for an outermost base—e.g., baseL—is chosen with
the appropriate probability—e.g., basek—after this the pro-
cedure is applied to the subsequences 1 tok−1 andk+1 toL.
If base L is chosen not to be paired at all, one uses the
sequence shortened by baseL. Considering a subsequence
from basek to l, the probabilitypi,j ;k,l that basesi and j sk
ø i , j ø ld are paired is given by

pi,j ;k,l =HZk,l
−1Zk,i−1e

−sesrk,r jd+E0d/kBTẐj+1,l basesi − 1 and j + 1 paired,

Zk,l
−1Zk,i−1e

−esrk,r jd/kBTẐj+1,l basesi − 1 and j + 1 unpaired.
J s7d

For each member of this ensembleE the quantity of inter-
est X is calculated and the averagekXl=s1/uEudoSXsSd is
used as an approximation to the expectation value of the
Gibbs-Boltzmann ensemble; for large enough ensemblesE,
this average approaches the true expectation value. In Sec.
IV all finite-temperature observables are calculated by an
ensemble generated according to Eq.s9d.

A simple observable is the energyE and its fluctuations
sDEd2, the latter is directly connected with the specific heat
cV=sDEd2/LkBT2.

Of particular importance is the overlapq between two
structuresS andS8,

qsS,S8d ª
2

L
o

1øi, jøL

Si,jSi,j8 , s8d

which is the number of bases paired to the same base in both
structures normalized such thatq lies always between 0 and
1. This is a measure of how similar two structures are. Note,
however, that with this definition the overlap of one structure
with itself is qsS ,Sd�1 unless all bases are paired, where it
is equal to 1. A definition ofq where also bases unpaired in
both structures are counted is used inf9g, resulting in an

overlap definition that is normalized; however, this similarity
measurement has the drawback that the fewer bases that are
paired, the more two structures become similar. We further
remark that for any two structuresS, S8 the Cauchy-Schwarz
inequality fqsS ,S8dg2øqsS ,SdqsS8 ,S8d holds. With this
quantityq two ensemblesE andE8 can be compared—e.g.,
looking at the distribution ofqsS ,S8d of all SPE ,S8PE8.

The ensemble averagesk·l in general depend on the cho-
sen sequence; therefore, a further averaging over several
srandomd sequences is required. This sequence average is
denoted byf·g. We again approximate this average by sum-
ming over a finite set of sequences.

Because of this two stage averaging, it is probably pref-
erable instead of looking atfkqlg directly to use functions of
the first and higher moments ofq—e.g., the Binder cumulant
f21–23g, which is defined by

Bª

1

2
S3 −

fkq4lg
fkq2l2g

D , s9d

where kqnl is either the average over all pairs of one en-
semble,
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qE
n
ª

1

uEusuEu − 1d o
S,S8PE
SÞS8

qnsS,S8d, s10d

or the average over all pairs of two ensembles,

qE,E8
n

ª

1

uEuuE8u o
SPE,S8PE8

qnsS,S8d. s11d

The ensemblesE and E8 are finite collections of structures
belonging to the same sequence—e.g., generated according
to Eq. s7d. Note, however, that in general the probabilities
pi,j ;k,l will be different—e.g., different temperaturesT or en-
ergy parametersEp,Esd. The latter choicefEq. s11dg is appro-
priate when one is looking for a change in the behavior of
the models when one varies the parameters in comparison to
a reference model, while the formerfEq. s10dg is the better
choice, if an external parameter—e.g., the temperature—is
varied.

qE is a measure of how similar the structures within en-
sembleE are, whileqE,E8 gives in addition a measure how
many structures both ensembles have in common. Typically,
e.g., in spin-glass studies, one examines the self-overlapqE,
but we believe that the cross overlapqE,E8 is more sensitive
for determining a parameter driven phase transition which
might occur in our case and therefore examine both quanti-
ties.

The Binder cumulantB vanishes at high temperatures,
while for low temperatures it approaches a finite value in the
thermodynamic limit.

A similar quantity—first introduced inf24g—has been
used inf12g:

Aª

fxR
2 g − fxRg2

fxRg2 , s12d

where

xR ª Lskq2l − kql2d s13d

is the variance of theq distribution. This parameterA mea-
sures how the probability distribution ofq varies from se-
quence to sequence. A value close to zero indicates a self-
averaging behavior. A similar physical content is represented
by another quantity introduced inf25g:

Gª

fxR
2 g − fxRg2

fL2ksq − kqld4lg − fxRg2 . s14d

The general strategy to find a phase transition with respect to
the energy parameters is to examine various quantities—e.g.,
the above introducedA, B, G—to find any of this indicating
a phase transition. It is quite possible that one quantity shows
a phase transition, while the others do not; see e.g., the on-
going discussion on whether Heisenberg spin glasses exhibit
just chiral ordering without traditional spin-glass order
f26–29g or both f30,31g, where the first group of authors
argues that the “right” observable shows a phase transition
while others might show no sign at all.

IV. NUMERICAL RESULTS

In order to find some possible differences in the behavior
of the energy model, Eq.s3d, for different parametersEp, Es,
as introduced in Eqs.s4d and s2d, respectively, we numeri-
cally calculated the quantities mentioned in Sec. III above. In
all our examples we averaged over randomly generated se-
quencesR=sr id, where the probability for a specific baser i

at positioni is 1
4 for all base types independent of the other

basesr jÞi. The size of the sequence varied fromL=128 up to
L=1024; for the disorder average 2000, up to 6000 random
sequences were used. Pairing of bases is only allowed for
complementary bases and the minimum distance between
two bases was chosen ass=2.

In Secs. IV A and IV B, we vary continuously the energy
parameters between the two extreme casessEp=0,Es=−1d
andsEp=−1,Es=0d. In Sec. IV A we shortly discuss the av-
erages of the stacking sizet and of theq for different energy
parameters. In Sec. IV B we examine the cross overlapqE,Eref

fsee Eq.s11dg between a reference ensembleEref generated
for fixed energy parameters and ensembles generated for dif-
ferent energy parameters. In the following Sec. IV C we look
at the temperature variation of various quantities without us-
ing any reference ensemble to estimate some critical param-
eters. In the last Sec. IV D we apply the«-coupling method
at T=0 to determine the critical exponentu describing the
behavior of low-lying excitations.

A. Basic observables

In Sec. II A, where we introduced the energy model, we
opposed the pair energy to the stacking energy model. In Fig.
2 we show the average sizet of a stacking as a function of
the energy parameterEp at temperatureT=0. We keepEp
+Es=−1 constant to fix the overall energy scale. For all fixed
energy parameters the average stacking sizet increases with
increasing system size, which is expected as with increasing

FIG. 2. Average stacking size as a function of energy parameter
Ep for different system sizessT=0d. At Ep=−1—i.e., Es=0 and
Ep=0—the curves are discontinuous. Missing error bars are of the
size of the symbols or smaller and omitted for legibility. Calculated
data points are indicated by symbols. Lines are drawn to guide the
eye.
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length the probability for longer stacks increases. Also as
expected is the overall increase in the average stacking size
with the energy parameterEs, because the stacking energy
prefers to build stacks. The large increase oft while chang-
ing Es from a zero to a nonzero value can be explained as
follows: The ground state forEp=−1.0,Es=0.0 is highly de-
generated, while changing to a nonzeroEs only those states
stay ground states which have a high stacking contribution to
the energy. This selection increases the average oft. A simi-
lar argument applies at the other end, whereEp changes from
a nonzero value to zero.

Similarly the overlapq jumps to a larger value when
changing fromEp=0 to a nonzero valuesFig. 3d. In addition,
at positions whereEp/Es are fractions with small numerator
and denominator—e.g.,11 or 1

3—for this energy parameter
the ground states in configuration space are more broadly
distributed than for slightly different parameters. This can be
seen in the right inset of Fig. 3, where theq distribution in
the symmetric casesEs=Ep=−0.5d is broader than in the
slightly asymmetric casesEs=−0.49,Ep=−0.51d. The width
of this minimum in the main plot, as well as that in Figs. 4
and 5, is belowDE=0.001, as one can estimate from the left
inset of Fig. 3.

For both the average stacking size and the average over-
lap, the behavior changes smoothly when moving from one
model to the other, with the exception of the highly degen-
erate points, where we can observe the jumps in the overlap
q. Hence, there is no sign of a transition in between the two
extremal models. To confirm this, we next study the Binder
cumulant.

B. Binder cumulant

Since we introduced in Eq.s3d a whole class of energy
models depending on the pair energyEp and the stacking

energyEs, we examined the behavior of the Binder cumulant
depending on these two energy parameters and the sequence
lengthL. Second-order phase transitions are characterized by
crossing of the Binder cumulant for different system sizes at
the transition point. We examined two slightly different
Binder cumulants in the hope that—in the sense of the dis-
cussion at the end of Sec. III—at least one of them shows
such a crossing.

In Fig. 4 the Binder cumulant, Eq.s9d, is shown atT=0
using the “self-overlap,” Eq.s10d. Again, the energy param-
etersEp andEs are varied such that alwaysEp+Es=−1 holds.
The value ofB increases with increasing system size forEp;
i.e., the curves do not cross each other and therefore give no
evidence of a phase transition. The local minima are—as the
minima in Fig. 3—due to the commensurability of the energy
parametersEp andEs.

FIG. 3. Average overlapqE as a function of the energy param-
eter Ep for different system sizes atT=0. The local minima atEp

=−0.75,−0.5,−0.25 are due to the commensurability ofEp andEs

and indicate a broad distribution of the ground states in configura-
tion space. The left inset is an enlargement to show the discontinu-
ity. The right inset is theq distribution forEs=Ep=−0.5ssolid linesd
and Es=−0.49, Ep=−0.51 sdashed linesd for sequence lengthsL
=512 sthin linesd andL=1024sthick linesd.

FIG. 4. The Binder cumulantB of Eq. s9d with q=qE fsee Eq.
s10dg at temperatureT=0. The curves for different system sizes do
not cross, and thereforeB gives no hint of a phase transition. Miss-
ing error bars are of the size of the symbols or smaller and omitted
for legibility. Calculated data points are indicated by symbols. Lines
are drawn to guide the eye.

FIG. 5. The Binder cumulantB of Eq. s9d with q=qE,E8 fsee Eq.
s11dg at temperatureT=0. Missing error bars are of the size of the
symbols or smaller and omitted for legibility. Calculated data points
are indicated by symbols. Lines are drawn to guide the eye.
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Further we used a reference ensemble generated for en-
ergy parametersEp=Es=−0.5 and used the “cross overlap”
of Eq. s11d. First, the values ofB at Ep=Es=−0.5 coincide
with the values shown in Fig. 4. Similar to the observation
above,B roughly increases with the system size, although the
separation of the curves is not as clear as in Fig. 4, especially
in the range fromEp=−0.4 toEp=0.0, where the curves co-
incide within the error bars. To summarize, the dependence
of the Binder cumulant on the energy parameters does not
indicate a phase transition.

C. Temperature dependence of the energy models

Another possible method to discriminate between the dif-
ferent energy parameters is to examine the temperature de-
pendence of some quantities, especially the behavior at a
critical temperature. In Ref.f12g it was shown for a similar
model that below a critical temperature, almost all sequences
fold to a compact structure, but for most sequences not into a
single structure. They point out that this kind of low-
temperature behavior is well known from spin glass and
other disordered systems. In Fig. 6 we plotted the specific
heat for different system sizes as a function of temperature
for Es=−1.0 andEp=0.0. All curves cross each other close to
T=0.11 andT=0.25, which is evidence for a phase transition
at this temperature region. The data for other energy param-
eterssEs,Epd look similar, but the curves cross at different
temperatures.

To determine the critical behavior quantitatively we inves-
tigated the widthxR of the overlap distribution. We found
that for all examined energy parameters and sequence
lengthsxR as a function of temperature has a maximum. We
show this maximum position in Fig. 7. We assume that the
maximum position follows the formTcsLd=Tc+aL−1/n and fit
the data to this form to get the critical parametersssee Fig.
7d. The results for three different pairs of energy parameters
are shown in Table I. The critical exponentn for the param-

eter pairsEs=0,Ep=−1d is clearly different from that of the
parameter pairsEs=−1,Ep=0d, showing that the quantitative
behavior changes when varying from one limiting case to the
other. On the other hand, for the intermediate parameter set
the critical exponent is consistent with both within the error
range.

In Fig. 8 we present the parameterG of Eq. s14d for the
energy parameterssEs,Epd=s0,−1d, s−0.5,−0.5d, and
s−1,0d. As known for other spin-glass-like modelsf25g the
value ofG approaches zero with increasing temperature. The
above authors find a limiting value of1

3 for decreasing tem-
perature, which has been shown to be the exact result under
some more restricted conditionsf32g. For two of our energy
parameters,sEs,Epd=s0,−1d and s−0.5,−0.5d, the data are
compatible with the same limiting value, while in the third
case, which has the lowest critical temperaturesTable Id, it is
not clear whether the values approach1

3 or not.
Finally, we also foundsnot shownd that the behavior ofA

of Eq. s12d is in agreement with this observation and with the
results for a two-letter RNA modelf12g. For all three cases
studied here, the width of theq distribution varies only
slightly from realization to realization at high temperatures,
while for low temperatures the self-averaging behavior dis-
appears.

D. «-coupling method

Previously the«-coupling methodhas been usedf11,33g
to investigate low-energy excitations of RNA secondary

FIG. 6. Specific heatcV as a function of temperature for param-
etersEs=−1.0 andEp=0.0. The curves for different system sizes
crosses atT<0.25 andT<0.11. The inset is an enlargement of the
main plot. Missing error bars are of the size of the symbols or
smaller and omitted for legibility. Calculated data points are indi-
cated by symbols. Lines are drawn to guide the eye.

FIG. 7. The position of the maxima ofxR for different energy
parameter. The curves are fitted to the formTcsLd=Tc+aL−1/n and
gives the critical parameters of Table I.

TABLE I. Critical parameter of axR maximum fit. Comparing
the two limiting casessEs,Epd=s−1,0d and sEs,Epd=s0,−1d the
parametersn andTc are different and indicate a quantitative change.
The last column belongs to the«-coupling method in Sec. IV D.

Energy model 1/n Tc u

Es=0 Ep=−1 0.93s15d 0.086s3d 0.229s38d
Es=−0.5 Ep=−0.5 0.70s36d 0.109s7d 0.237s50d
Es=−1 Ep=0 0.36s17d 0.125s21d 0.194s67d
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structures. The basic idea is to add another term to the energy
model in Eq.s3d, which depends on the ground state of the
original problem: AssumeS0 is the unique ground state of
EsSd; then, a new energy function is defined as

E«sSd = EsSd + «qsS,S0d, s15d

with «.0. The additional term penalizes structures similar
to S0, where«qsS ,S0d is largest forS=S0. In general the
ground stateS« of the new energy modelE« will be different
from S0. The differenceDEs«dªEsS«d−EsS0d is an increas-
ing function of« andDEs«dø« holds. The latter implies that
S« is for small enough« a low-lying excitation of the origi-
nal energy model and has the smallest overlap withS0.

The average distanceds« ,Ldª1−qsS« ,S0d between the
new and old ground states scales asds« ,Ld~«L−u, « con-
stant, while the average energy difference scales as
DEsd,Ld~Lu, d constant, with the critical exponentsu. For
details see Refs.f11,33g.

The assumption of a unique ground state used above does
not hold for our model used so far: in general the ground
state is highly degenerated because only two energy param-
eterssEs andEpd are used and many structures will have the
same energy. The degeneracy of the ground state renders the
«-coupling method as described above almost useless. Since
in natural RNA the contributions to the energy are more
complex, different structure will never be degenerated. This
justifies to change the energy model slightly by adding a
random energyhi,j to the pair energies introduced in Eq.s1d:
esr i ,r jd→esr i ,r jd+hi,j. There are several possibilities to
choose the distributions of theh’s sseef11gd; here, we use
identical, independently distributed Gaussian random num-
bers with zero meankhl=0 and variancekh2l=h0

2/L with
h0=0.1 sthe quasidegeneratesQDd model in Ref.f11gd.

The raw result for different values of«P f0.01,100g is
shown in Fig. 9. A scaling plot of the data for«,1 accord-
ing the scaling formDEL−u= fsdd is shown in the inset of

Fig. 9. The scaling parametersu leading to the best data
collapse for different energy parameters are shown in the
rightmost column of Table I. They are equal within the error
margins and thus do not give us a further hint of a quantita-
tive different behavior for different energy parameters. These
difficulties in doing a good scaling of the data in the QD
model were already pointed outf11g. However, for a differ-
ent model using a scaling function with finite-size correc-
tions a critical exponentu=0.23±0.05 was obtainedf33g,
which is close to our findings.

V. SUMMARY

We have introduced a RNA secondary structure model
which continuously interpolates between two well-known
models incorporating both bond and stacking energies. The
model does not allow for pseudoknots; nor does it take dif-
ferent entropic terms for different structural elements into
account. The simplicity of the model enables us to present a
recursive formula for the partition function, which allows a
fast exact evaluation for each realization of the disorder.

We sought an answer to the question whether there is a
qualitative difference between the behavior induced by either
bond or stacking energies. In particular we are interested
whether there is any phase transition of the thermodynamic
behavior when moving continuously from the pure bond to
the pure stacking model. The way we look at the model to
find such a transition is to consider it as a statistical mechan-
ics model exhibiting quenched disorder through the se-
quences. We measure typical quantities like distributions of
overlaps and derived quantities which are based on higher
moments of these distributions. It was known already that
the pure bond-energy model exhibits at low temperatures a
complex ground-state landscape and has some features with
spin glasses in common. In particular, this phase exhibits a

FIG. 8. The parameterG fEq. s14dg as a function of temperature
for different energy parameterssEs,Epd=s0,−1d, s−0.5,−0.5d, and
s−1,0d. For low temperatures the first two cases approach the the-
oretical expected valueGsT→0d= 1

3, while in the third case—the
one with the lowest critical temperature—this is not clear.

FIG. 9. «-coupling results forEs=−0.5, Ep=−0.5. The energy
differenceDEsSd between the original ground-state structureS0 and
the ground-state structureS« of the disturbed model is plotted as a
function of the distance between this structures. The inset is a
scaled plot of the data with«,1 of the main plotsu=0.24; see
Table Id. Missing error bars are of the size of the symbols or smaller
and omitted for legibility. Calculated data points are indicated by
symbols. Lines are drawn to guide the eye.
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lack of self-averaging for the distribution of overlaps. To
search for a transition, we considered both zero as well as
finite temperatures.

Zero-temperature results give no evidence for a
parameter-driven phase transition apart from trivial
crossovers—e.g., discontinuities oft at points withEs=0 or
Ep=0. The curves of the Binder cumulant do not cross at any
point, which would be an indication of a phase transition.
Similar, the critical exponentu derived from the«-coupling
method seems to be independent of the energy parametersEs
and Ep, and therefore gives no evidence for a quantitative
difference in the thermodynamic properties. But as stated in
f11g, the determination of the critical exponent is rather dif-
ficult in the quasidegenerated case studied here.

Hence, at low temperatures a somehow complex ordered
phase, with many similarities to spin glasses, is present for
all parameter combinations in our model. However, the
finite-temperature results show a quantitative dependence on
the energy parameters, when studying the transition from the
high-temperature phase to the low-temperature ordered
phase, at fixed values for the energy parameters. The critical
exponentn for the correlation length seems to depend on the
energy model and may vary continuously while going from
one limiting model to the other.

Wrapping up, there seems to be no strong qualitative dif-
ference between the models with just bond and just stacking
energies. For all considered values of the energy parameters,
there exists an ordered low-temperature glassylike phase,
characterized by the lack of self-averaging of the distribution
of overlaps. Just the quantitative behavior seems to depend
somehow on the energy contributions; i.e., a crossover may
occur. It is still possible that these results are due to the

simplicity of our model, since it does not allow for
pseudoknots; nor does it give different entropic weights to
different structural elements like hairpins, bulges, etc. When
including entropic contributions, we do not expect a funda-
mental change in behavior, because this approach changes
only the relative weights given to the different structural el-
ements. On the other hand, the inclusion of pseudoknots
might really have a strong qualitative effect. Unfortunately,
the case of pseudoknots has a much higher computational
complexity. Hence, only small systems can be studied. Nev-
ertheless, preliminary resultsf34g indicate that the presence
of pseudoknots makes no strong difference in the low-
temperature behavior, at least for the case where only bond
energies are considered.

As a last point, it might be worthwhile not to use random
sequences but sequences which show up in biological
systems—e.g., such as ribozymes. These special selected se-
quences might have some special properties random se-
quences in general do not have, e.g., a unique ground state,
which in turn might influence the quantities discussed in this
paper.
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